ageer il y a 2 mois
Parent
commit
fe62ae4d5e

+ 1 - 1
README.md

@@ -158,7 +158,7 @@ RuoYi-AI
 - [Naive UI](https://www.naiveui.com)
 - [RuoYi-Vue-Plus](https://gitee.com/dromara/RuoYi-Vue-Plus)
 
-## Community
+## 贡献者
 <a href="https://github.com/ageerle/ruoyi-ai/graphs/contributors">
   <img src="https://contrib.rocks/image?repo=ageerle/ruoyi-ai" />
 </a>

+ 21 - 0
script/docker/localModels/Dockerfile

@@ -0,0 +1,21 @@
+# 使用官方 Python 作为基础镜像
+FROM python:3.8-slim
+
+# 设置工作目录为 /app
+WORKDIR /app
+
+# 复制当前目录下的所有文件到 Docker 容器的 /app 目录
+COPY . /app
+
+# 安装应用依赖
+RUN pip install --no-cache-dir -r requirements.txt
+
+# 暴露 Flask 应用使用的端口
+EXPOSE 5000
+
+# 设置环境变量
+ENV FLASK_APP=app.py
+ENV FLASK_RUN_HOST=0.0.0.0
+
+# 启动 Flask 应用
+CMD ["flask", "run", "--host=0.0.0.0"]

+ 116 - 0
script/docker/localModels/app.py

@@ -0,0 +1,116 @@
+from flask import Flask, request, jsonify
+from sentence_transformers import SentenceTransformer
+from sklearn.metrics.pairwise import cosine_similarity
+import json
+
+app = Flask(__name__)
+
+# 创建一个全局的模型缓存字典
+model_cache = {}
+
+# 分割文本块
+def split_text(text, block_size, overlap_chars, delimiter):
+    chunks = text.split(delimiter)
+    text_blocks = []
+    current_block = ""
+
+    for chunk in chunks:
+        if len(current_block) + len(chunk) + 1 <= block_size:
+            if current_block:
+                current_block += " " + chunk
+            else:
+                current_block = chunk
+        else:
+            text_blocks.append(current_block)
+            current_block = chunk
+    if current_block:
+        text_blocks.append(current_block)
+
+    overlap_blocks = []
+    for i in range(len(text_blocks)):
+        if i > 0:
+            overlap_block = text_blocks[i - 1][-overlap_chars:] + text_blocks[i]
+            overlap_blocks.append(overlap_block)
+        overlap_blocks.append(text_blocks[i])
+
+    return overlap_blocks
+
+# 文本向量化
+def vectorize_text_blocks(text_blocks, model):
+    return model.encode(text_blocks)
+
+# 文本检索
+def retrieve_top_k(query, knowledge_base, k, block_size, overlap_chars, delimiter, model):
+    # 将知识库拆分为文本块
+    text_blocks = split_text(knowledge_base, block_size, overlap_chars, delimiter)
+    # 向量化文本块
+    knowledge_vectors = vectorize_text_blocks(text_blocks, model)
+    # 向量化查询文本
+    query_vector = model.encode([query]).reshape(1, -1)
+    # 计算相似度
+    similarities = cosine_similarity(query_vector, knowledge_vectors)
+    # 获取相似度最高的 k 个文本块的索引
+    top_k_indices = similarities[0].argsort()[-k:][::-1]
+
+    # 返回文本块和它们的向量
+    top_k_texts = [text_blocks[i] for i in top_k_indices]
+    top_k_embeddings = [knowledge_vectors[i] for i in top_k_indices]
+
+    return top_k_texts, top_k_embeddings
+
+@app.route('/vectorize', methods=['POST'])
+def vectorize_text():
+    # 从请求中获取 JSON 数据
+    data = request.json
+    print(f"Received request data: {data}")  # 调试输出请求数据
+
+    text_list = data.get("text", [])
+    model_name = data.get("model_name", "msmarco-distilbert-base-tas-b")  # 默认模型
+
+    delimiter = data.get("delimiter", "\n")  # 默认分隔符
+    k = int(data.get("k", 3))  # 默认检索条数
+    block_size = int(data.get("block_size", 500))  # 默认文本块大小
+    overlap_chars = int(data.get("overlap_chars", 50))  # 默认重叠字符数
+
+    if not text_list:
+        return jsonify({"error": "Text is required."}), 400
+
+    # 检查模型是否已经加载
+    if model_name not in model_cache:
+        try:
+            model = SentenceTransformer(model_name)
+            model_cache[model_name] = model  # 缓存模型
+        except Exception as e:
+            return jsonify({"error": f"Failed to load model: {e}"}), 500
+
+    model = model_cache[model_name]
+
+    top_k_texts_all = []
+    top_k_embeddings_all = []
+
+    # 如果只有一个查询文本
+    if len(text_list) == 1:
+        top_k_texts, top_k_embeddings = retrieve_top_k(text_list[0], text_list[0], k, block_size, overlap_chars, delimiter, model)
+        top_k_texts_all.append(top_k_texts)
+        top_k_embeddings_all.append(top_k_embeddings)
+    elif len(text_list) > 1:
+        # 如果多个查询文本,依次处理
+        for query in text_list:
+            top_k_texts, top_k_embeddings = retrieve_top_k(query, text_list[0], k, block_size, overlap_chars, delimiter, model)
+            top_k_texts_all.append(top_k_texts)
+            top_k_embeddings_all.append(top_k_embeddings)
+
+    # 将嵌入向量(ndarray)转换为可序列化的列表
+    top_k_embeddings_all = [[embedding.tolist() for embedding in embeddings] for embeddings in top_k_embeddings_all]
+
+    print(f"Top K texts: {top_k_texts_all}")  # 打印检索到的文本
+    print(f"Top K embeddings: {top_k_embeddings_all}")  # 打印检索到的向量
+
+    # 返回 JSON 格式的数据
+    return jsonify({
+
+        "topKEmbeddings": top_k_embeddings_all  # 返回嵌入向量
+    })
+
+if __name__ == '__main__':
+    app.run(host="0.0.0.0", port=5000, debug=True)

+ 3 - 0
script/docker/localModels/requirements.txt

@@ -0,0 +1,3 @@
+Flask==2.0.3
+sentence-transformers==2.2.0
+scikit-learn==0.24.2